a2 United States Patent

Mody et al.

US009473784B2

US 9,473,784 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

SAMPLE ADAPTIVE OFFSET (SAO)
FILTERING IN VIDEO CODING

Applicant: Texas Instruments Incorporated,
Dallas, TX (US)

Inventors: Mihir Narendra Mody, Bangalore
(IN); Niraj Nandan, Bangalore (IN);

Hideo Tamama, San Diego, CA (US)

TEXAS INSTRUMENTS
INCORPORATED, Dallas, TX (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 172 days.

Appl. No.: 14/279,318

Filed: May 16, 2014

Prior Publication Data

US 2014/0341287 Al Nov. 20, 2014

Related U.S. Application Data

Provisional application No. 61/825,286, filed on May
20, 2013.

Int. CL.

HO4N 19/89 (2014.01)
HO4N 19/14 (2014.01)
HO4N 19/82 (2014.01)
HO4N 19/436 (2014.01)
HO4N 19/176 (2014.01)
HO4N 19/117 (2014.01)
HO4N 19/186 (2014.01)
HO4N 19/182 (2014.01)

(Continued)

U.S. CL

CPC HO4N 19/436 (2014.11); HO4N 19/117

(2014.11); HO4N 19/14 (2014.11); HO4N
19/176 (2014.11); HO4N 19/182 (2014.11);

HO4N 19/186 (2014.11); HO4N 19/423
(2014.11); HO4N 19/82 (2014.11)
(58) Field of Classification Search
CPC .. HO4N 19/117; HO4N 19/182; HO4N 19/89;
HO4N 19/793
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2013/0101031 Al* 4/2013 Van der Auwera HOAN 19/14
375/240.12
2013/0329784 Al* 12/2013 Chuang HO4N 19/00012
375/240.02
2014/0036991 Al* 2/2014 Chaoccccoevenn. HO4N 19/82
375/240.02

OTHER PUBLICATIONS

Hetul Sanghvi, “Low Power Architecture for Motion Compensation
in a 4K Ultra-HD AVC and HEVC Video Codec System”, Proceed-
ings of the 2013 IEEE Second International Conference on Image
Information Processing, pp. 400-404, Dec. 9-11, 2013, Shimla,
India.

(Continued)

Primary Examiner — Mehrdad Dastouri

Assistant Examiner — Obafemi Sosanya

(74) Attorney, Agent, or Firm — Ronald O. Neerings;
Frank D. Cimino

(57) ABSTRACT

A method for sample adaptive offset (SAO) filtering of
largest coding units (LCUs) of a video frame in an SAO
component is provided that includes receiving, by the SAO
component, an indication that deblocked pixel blocks of an
LCU are available, and applying SAO filtering, by the SAO
component, to each pixel block of pixel blocks of an SAO
processing area corresponding to the LCU responsive to the
indication, wherein pixels of each pixel block of the SAO
processing area are filtered in parallel.

16 Claims, 11 Drawing Sheets

28 [29 | 30 | 31

US 9,473,784 B2
Page 2

(51) Int. CL

HO4N 19/423 (2014.01)
HO4N 19/102 (2014.01)
(56) References Cited

OTHER PUBLICATIONS

“High Efficiency Video Coding”, Series H: Audiovisual and Mul-
timedia Systems, Infrastructure of Audiovisual Services—Coding
of Moving Video, ITU-T Recommendation H.265, Telecommuni-
cation Standardization Sector of International Telecommunication
Union, pp. 1-317, Apr. 2013.

Seungyong Park and Kwangki Ryoo, “The Hardware Design of
Effective SAO for HEVC Decoder”, 2013 IEEE 2nd Global Con-
ference on Consumer FElectronics, pp. 303-304, Oct. 1-4, 2013,
Tokyo, Japan.

Hetul Sanghvi, “2D Cache Architecture for Motion Compensation
in a 4K Ultra-HD AVC and HEVC Video Codec System”, 2014
IEEE International Conference on Consumer Flectronics, pp. 189-
190, Jan. 10-13, 2014.

Sha Shen et al, “A Pipelined VLSI Architecture for Sample Adaptive
Offset (SAO) Filter and Deblocking Filter of HEVC”, IEICE
Electronics Express, vol. 10, No. 11, 1-11, Jun. 10, 2013.

Mahesh Mehendale et al, “A True Multistandard, Programmable,
Low-Power, Full HD Video-Codec Engine for Smartphone SoC”,
2012 IEEE International Solid-State Circuits Conference, Session
12, pp. 226-228, Feb. 19-23, 2012, San Francisco, CA.

Gary J. Sullivan et al, “Overview of the High Efficiency Video
Coding (HEVC) Standard”, IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, No. 12, pp. 1649-1668, Dec.
2012.

Mihir Mody et al, “High Throughput VLSI Architecture Supporting
HEVC Loop Filter for ULtra HDTV™, 2013 IEEE Third Interna-
tional Conference on Consumer Electronics, pp. 54-57, Sep. 9-11,
2013, Berlin, Germany.

Chih-Ming Fu et al, “Sample Adaptive Offset in the HEVC Stan-
dard”, IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 22, No. 12, pp. 1755-1764, Dec. 2012.

Chi Ching Chi et al, “Parallel Scalability and Efficiency of HEVC
Parallelization Approaches”, IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, No. 12, pp. 1827-1838, Dec.
2012.

Jiaya Zhu et al, “A Combined SAO and De-Blocking Filter Archi-
tecture for HEVC Video Decoder”, 20th IEEE International Con-
ference on Image Processing, pp. 1967-1971, Sep. 15-18, 2013,
Melbourne, VIC.

* cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 11 US 9,473,784 B2

0(1]2]3 coo 28129 |30 | 31

FIG. 1

TET : :

(a) 0-DEGREE (b) 90-DEGREE (c) 135-DEGREE (d) 45-DEGREE

\

FIG. 2

UP-LEFT UP

SAO
I [~ PROCESSING

LEFT AREA

FIG. 5

US 9,473,784 B2

Sheet 2 of 11

Oct. 18, 2016

U.S. Patent

¢ DIA
e T ——————
/ X3ANI 13XId \ / X3ANI 13XId
_ L+X X X _ _ +X X |-X
— ——
| | | | | |
| e
| 138440 3AILYD3N | | | o N | _ | m 138440 IAILISOd
| L | L
A = “ =
| L | LU
_ I I = _ _ I x
| | Ty .
| X3aNI 13XId X3aNI 13Xid N X3aNI 13Xid X3aNI 13XId
_ L+X X L-X L+X X [_ _ +X X |-X +X X |-X
—— < S —t
| | | | | | | | | | | |
I o e o
| | | -1 | | | -1 | | | -l | | | |
_ ! ! | g | | = | ! ! | g | | u
1| I 1| | [11] | | Ll
4 - N = =
_ w _ w _ _ I w _ | m
| pod | _ > | < _ | x
— o | o _ _ | o | | o
\ y AHOOALYD € AHOOALYD | AHO93LYD
S—— o e e e e s e s . ——— —_— —— —— — — — — — — —— ——

US 9,473,784 B2

Sheet 3 of 11

Oct. 18, 2016

U.S. Patent

A .V @Hm A A
A 4 Y
JOV4HILNI AHOWAN _~9¢Y Ver~ m_od__nmhz_ L1dNYYILNI
A
A
Y3L1VWHOA - wawynaa 8
A \ A A
1745% Y
TodINoD |9k
119d
y y i
AONAN | EEE I §
x\m_o\s J\Mx_mw%\s N\? o\m¢
cky dd 0V o] wvavd ovs < L
D | Wvevdovs |
YITIOYLNOD
\
mmﬁm_%a - | SHALSIOTY] O1ANOD =
/ \ \
80V 14017 0y
A
(0]0] 4

U.S. Patent Oct. 18, 2016 Sheet 4 of 11 US 9,473,784 B2

(_ START)

Y

600~ RECEIVE RELEVANT
FRAME PARAMETERS

[

602 ‘

DEBLOCKED
LCU READY

604~| FILTERLUMAOF
PROCESSING AREA

Y

606~ FILTER Cb OF
PROCESSING AREA

Y

FILTER Cr OF
608-"| PROCESSING AREA

\
FORMAT FILTERED LUMA,
610~ Cb, Cr PIXEL BLOCKS

Y

STORE FORMATTED
612 PIXEL DATA

ALL
LCUs PROCESSED

U.S. Patent Oct. 18, 2016 Sheet 5 of 11 US 9,473,784 B2

(_ START)

Y

700~ RETRIEVE SAO PARAMETERS
AND TOP PIXEL BUFFER

\
702~ LOAD FIRST FILTER BLOCK IN WPB

[

704)

FILTER
BLOCK READY

706~ LOAD NEXT FILTER BLOCK IN WPB

Y

3-STAGE | FILTER PIXELS IN PIXEL BLOCK
PIPELINE || 708" PER SAO PARAMETERS

Y
7101 STORE FILTERED PIXEL BLOCK

ALL
PIXEL BLOCKS FILTERED

STORE TOP WORK BUFFER
7141 AND SAO PARAMETERS IN
SHARED MEMORY POOL

Y

C END)
FIG. 7

U.S. Patent

Oct. 18, 2016

Sheet 6 of 11

US 9,473,784 B2

LCUO LU LCU2 LCU3
SAO
PROCESSING —
AREA
LCUS Lcu?
Lcus LCU9 LCU10 LCU11
LCU12 LCU13 LCU14 LCU15
FIG. 8
L00 | L10 | T0O L10 | ToO | TO1 T00 | TO1 | TO2
Lot | L11 | At L11 | A11 | A2 A1 | A12 | A21
02 | L12 | A13 L12 | A13 | At4 A13 | Al4 | A23
FIG. 11A FIG. 11B FIG. 11C
T01 | TO2 | TO3 Lot | L11 | A1
A12 | A21 | A2 L02 | L12 | A13
A4 | A23 | A24 L03 | L13 | A31
FIG. 11D FIG. 11E

US 9,473,784 B2

Sheet 7 of 11

Oct. 18, 2016

U.S. Patent

r—r————"-""""""""""="""="-""-"=-"-=-—"=-—"=-—"=-—"=-—"=-—-=-=-= |
| |
S S S S 3 N S g 3 S I
e m om) m a o a a s
r |LI||||||||||||||||I||I|_ |
| |
S o~ | 3 b ~F o o~ < < S |
[t | nu_ o fea) fea) e) (o) (o) | oM _
| |
M | |
O r=} — | ~ L) o - -— L] ™ S
= w [| o m m m (] (] [[n | [
F//' (=4 | m m o oM O o o o | @
_ _ _ _
s (1l silzlels!alslelzl] el
F I < < < < O O o o | @
_ _ _ :
_ _ _ _
%u - | < < <t <C [&] (&) (&} O | om
O « | _ | _K
e s li|l sl el slgl=slels|lali]|sl|lB
- <~ - -
Ao << | F I <l = < < o O O O I @ I =
| | —
/v“ L _ L
|||||||||||||| |||||||_|||| —
RO [ew) ~ [aV] o <t Lo © M~ [s 0] N
o' - | | | | | - - - -
= | |
T L J
L
5 — e e — — — — o — — — — ——
Y ®
[(o) ~ N on ~ Lo © P~ [+0] (o]
() (] [(] (] o o [] o O
| — | | — - | | | |

BUFFER 1

LCU

FIG. 9

U.S. Patent Oct. 18, 2016 Sheet 8 of 11 US 9,473,784 B2

SAO
LEFT WORK TOP WORK
PROCESSING
[BUFFER 0 AREA [BUFFER
L0O L10 TOO | TO1 | TO2 | TO3 | TO4 | TO5 | TO® | TO7
r—-r——"-""""""""-—=-—"=-—"=-—-"=-"=-"=-—== |
| |
LO1 : L11 A11 | A12 ¢21 A22 | B11 | B12 321 : B22
| I R I A R = R TR
L02 : 12 LT M3 | A4 | A23 | [A24 L B13 | B14 | B23 : B4 ||
—> >
| : — / T | :
L3 | 1| L1 13 {1 AT | A2 £41 A42_|-B317| B32 341 | B42 |
| —L ” |
I : 4 / ,/ I :
Lo4 | 1| L4 L1 AS3 | AM £43 A44_|-B33 ™| B34 | B43 |IBM |
5 | 1 L@__r',__ Cti-ci2 [Cot | €22 | DIt | D12 | D21 |1D22 :
: | ///‘ ///’ : |
o6 | | L12’*’ c13 | c14 £23 C24 L D13"| D14 223 | D24 :
I . . o I
I : A / ’/ | :
L07 : L17,_{ A cat 032/ 341 C42_{-D31 7| D32 ! 241 : D42 :
Log | y | L18, | L+ 33 | C34 | C43 | C44 | D33 | D34 | D43 | D44 | |
| | > s > | |
A . I
I I
I I
L09 L19 | | Boo | B0 | B0O2 | BO3 | BO4 | BO5 | B06 | BO7 | |
I I

\ L e e e e J
LEFT WORK \ LCU

BUFFER 1 FIG. 10

U.S. Patent

Oct. 18, 2016

Sheet 9 of 11

US 9,473,784 B2

—>
4’
= —_————
‘4’ /, / /’
/
- > |/ , /
7 7
/ // 7
P / rd
- -— -
-
Lo
-
-
-
-
-
/’ =
-
-
-
-
-
-
a“_L__ R
/ / /7
7 7
/
/ , 7
/ , /
7 7
/ // 7
P / rd
- -

FIG. 12

US 9,473,784 B2

Sheet 10 of 11

Oct. 18, 2016

U.S. Patent

¢l "DId
N 0078 . | %0018 050078
TaXId IOLS T3XId OLS | TAXId OLS
NYOOEYALTE | | 140018 ¥3LT | 0%0078 ¥3LTH
$5300%d $53004d $53004d
N 0078 o | Y00 0340078
ML QVOT AL QVOT | W3LTIH V0T

U.S. Patent Oct. 18, 2016 Sheet 11 of 11 US 9,473,784 B2

}08
FILTER EDGE OFFSET
BLOCK
PIXEL
BLOCKS |
- 36 PIXELS
EO TYPE =
16 FLAGS , | ALU 16 PIXELS
/ —
OFFSET
BUFFER TSYAI;ZI)E
FILTERED
Y PIXEL

Y
A 4
A

MUX [~ =+ [CLIP

OFFSET BAND OFFSET

BUFFER
\\\\\ FILTERED

PIXEL

FILTERED
PIXEL BLOCK

MUX

\

4
Yy
Y

MUX > 4 [CLIP

BOPos /(

-

16 FLAGS , | ALU 16 PIXELS

7

)
PIXEL 16 PIXELS
BLOCK REG

Y

FIG. 14

US 9,473,784 B2

1

SAMPLE ADAPTIVE OFFSET (SAO)
FILTERING IN VIDEO CODING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims benefit of U.S. Provisional Patent
Application Ser. No. 61/825,286, filed May 20, 2013, which
is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments of the present invention generally relate to
sample adaptive offset (SAO) filtering in video coding.

2. Description of the Related Art

The Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T WP3/16 and ISO/IEC JTC 1/SC 29/WG 11 has
developed the next-generation video coding standard
referred to as High Efficiency Video Coding (HEVC). Simi-
lar to previous video coding standards such as H.264/AVC,
HEVC is based on a hybrid coding scheme using block-
based prediction and transform coding. First, the input signal
is split into rectangular blocks that are predicted from the
previously decoded data by either motion compensated
(inter) prediction or intra prediction. The resulting predic-
tion error is coded by applying block transforms based on an
integer approximation of the discrete cosine transform,
which is followed by quantization and coding of the trans-
form coefficients.

In a coding scheme that uses block-based prediction,
transform coding, and quantization, some characteristics of
the compressed video data may differ from the original video
data. For example, discontinuities referred to as blocking
artifacts can occur in the reconstructed signal at block
boundaries. Further, the intensity of the compressed video
data may be shifted. Such intensity shift may also cause
visual impairments or artifacts. To help reduce such artifacts
in decompressed video, the HEVC standard defines two
in-loop filters: a deblocking filter to reduce blocking artifacts
and a sample adaptive offset filter (SAO) to reduce distortion
caused by intensity shift. These filters may be applied
sequentially, and, depending on the configuration, the SAO
filter may be applied to the output of the deblocking filter.
This in-loop filtering is one of most computationally inten-
sive parts of the decoding process and may be approximately
15-20% of the overall decoding complexity.

SUMMARY

Embodiments of the present invention relate to methods
and apparatus for sample adaptive offset (SAO) filtering in
video decoding. In one aspect, a method for sample adaptive
offset (SAO) filtering of largest coding units (LCUs) of a
video frame in an SAO component is provided that includes
receiving, by the SAO component, an indication that
deblocked pixel blocks of an LCU are available, and apply-
ing SAO filtering, by the SAO component, to each pixel
block of pixel blocks of an SAO processing area correspond-
ing to the LCU responsive to the indication, wherein pixels
of each pixel block of the SAO processing area are filtered
in parallel.

In one aspect, an apparatus for sample adaptive offset
(SAO) filtering is provided that includes a memory, a
controller coupled to the memory and configured to
sequence loading of pixel blocks of an SAO processing area
into the memory, filtering of the pixel blocks by a filter

10

15

20

25

30

35

40

45

50

55

60

65

2

engine, and storing of the filtered pixel blocks, wherein the
SAO processing area corresponds to a largest coding unit
(LCU) of a video frame, and wherein the loading, filtering,
and storing is performed responsive to an indication that
deblocked pixel blocks of the LCU are available, and the
filter engine coupled to the controller and the memory,
wherein the filter engine is configured to apply SAO filtering
to a pixel block of the SAO processing area stored in the
memory, wherein all pixels in the pixel block are filtered in
parallel.

BRIEF DESCRIPTION OF THE DRAWINGS

Particular embodiments will now be described, by way of
example only, and with reference to the accompanying
drawings:

FIG. 1 is an example illustrating band offset (BO) clas-
sification in sample adaptive offset (SAO) filtering;

FIG. 2 is an example illustrating edge offset (EO) clas-
sification patterns in SAO filtering;

FIG. 3 is an example illustrating edge types by EO
category,

FIG. 4 is a block diagram of an SAO filter architecture;

FIG. 5 is an example illustrating the SAO processing area
of a largest coding unit (LCU);

FIGS. 6 and 7 are flow diagrams of methods;

FIGS. 8-13 are examples; and

FIG. 14 is a block diagram of the filter engine of the SAO
filter architecture.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

Specific embodiments of the invention will now be
described in detail with reference to the accompanying
figures. Like elements in the various figures are denoted by
like reference numerals for consistency.

As used herein, the term “picture” may refer to a frame or
a field of a frame. A frame is a complete image captured
during a known time interval. For convenience of descrip-
tion, embodiments are described herein in reference to
HEVC. One of ordinary skill in the art will understand that
embodiments of the invention are not limited to HEVC.

In HEVC, a largest coding unit (LCU) is the base unit
used for block-based coding. Note that an LCU may also be
called a coding tree unit (CTU) in some documents. A
picture is divided into non-overlapping L.CUs. That is, an
LCU plays a similar role in coding as the macroblock of
H.264/AVC, but it may be larger, e.g., 32x32, 64x64, etc. An
LCU may be partitioned into coding units (CU). ACU is a
block of pixels within an LCU and the CUs within an LCU
may be of different sizes. The partitioning is a recursive
quadtree partitioning. The quadtree is split according to
various criteria until a leaf is reached, which is referred to as
the coding node or coding unit. The maximum hierarchical
depth of the quadtree is determined by the size of the
smallest CU (SCU) permitted. The coding node is the root
node of two trees, a prediction tree and a transform tree. A
prediction tree specifies the position and size of prediction
units (PU) for a coding unit. A transform tree specifies the
position and size of transform units (TU) for a coding unit.
A transform unit may not be larger than a coding unit and the
size of a transform unit may be, for example, 4x4, 8x8,
16x16, and 32x32. The sizes of the transforms units and
prediction units for a CU are determined by the video
encoder during prediction based on minimization of rate/
distortion costs.

US 9,473,784 B2

3

The current released version of HEVC is described in the
following document, which is incorporated by reference
herein: “ITU-T recommendation H.265: High Efficiency
Video Coding”, Telecommunication Standardization Sector
of International Telecommunication Union (ITU-T), April,
2013 (“HEVC Standard”).

As previously mentioned, a sample adaptive offset (SAO)
in-loop filter is one of the in-loop filters included in the
HEVC standard. These in-loop filters are applied in the
encoder and the decoder. A high level description of SAO is
provided herein. A more detailed description may be found,
for example, in the HEVC Standard and C. Fu, et al.,
“Sample Adaptive Offset in the HEVC Standard,” IEEE
Transactions on Circuits and Systems for Video Technology,
Vol. 22, No. 12, pp. 1755-1764, December 2012. SAO may
be applied to reconstructed pixels after application of a
deblocking filter. In general, SAO involves adding an offset
to compensate for intensity shift directly to a reconstructed
pixel. The value of the offset depends on the local charac-
teristics surrounding the pixel, i.e.,, edge direction/shape
and/or pixel intensity level. There are two kinds of offsets
that may be applied: band offsets (BO) and edge offsets
(EO). The band offset classifies pixels by intensity interval
of the reconstructed pixel, while edge offset classifies pixels
based on edge direction and structure.

To determine band offsets, pixels are classified by inten-
sity level of the corresponding reconstructed pixels. As
illustrated in FIG. 1, to determine band offsets, reconstructed
pixels are classified into multiple bands where each band
contains pixels in the same intensity interval. That is, the
intensity range is equally divided into 32 bands from zero to
the maximum intensity value. For example, for 8-bit pixels
with values ranging from 0 to 255, the width of each band
is 8, and pixel values from 8 k to 8 k+7 are in a band k, where
O<k=31. The offset for a band may be computed as an
average of the differences between the original pixel values
and the reconstructed pixel values of the pixels classified
into the band.

To determined edge offsets, reconstructed pixels are clas-
sified based on a one dimensional (1-D) delta calculation.
That is, the pixels can be filtered in one of four edge
directions (0, 90, 135, and 45) as shown in FIG. 2. For each
edge direction, a pixel is classified into one of five categories
based on the intensity of the pixel relative to neighboring
pixels in the edge direction. Categories 1-4 each represent
specific edge shapes as shown in FIG. 3 while category 0 is
indicative that none of these edge shapes applies. Offsets for
each of categories 1-4 are also computed after the pixels are
classified.

More specifically, for each edge direction, a category
number ¢ for a pixel is computed as c=sign (p0—pl)+sign
(p0—p2) where p0 is the pixel and p1 and p2 are neighboring
pixels, i.e., the “shaded” pixels of FIG. 2. The edge condi-
tions that result in classifying a pixel into a category are
shown in Table 1 and are also illustrated in FIG. 3. After the
pixels are classified, offsets are generated for each of cat-
egories 1-4. The offset for a category may be computed as
an average of the differences between the original pixel
values and the reconstructed pixel values of the pixels in the
region classified into the category.

10

15

20

25

30

35

40

45

50

55

60

65

TABLE 1
Category Condition

1 pO <pl and pO < p2

2 (p0 < pl and p0 = p2) or (p0 < p2 and
p0 = pl)

3 (p0 > pl and p0 = p2) or (p0 > p2 and
pO = pl)

4 pO > pl and pO > p2

0 none of above

In HEVC, the determination of the SAO filter type and
offsets for color components is performed at the LCU level.
The encoder decides which of the SAO filter types is to be
used for each color component, i.e., Y, Cb, and Cr, of an
LCU. The encoder may use any suitable criteria for selecting
the SAO filter types for the color components. For example,
the encoder may decide the best SAO filter type and asso-
ciated offsets for each color component based on a rate
distortion technique that estimates the coding cost resulting
from the use of each SAO filter type. More specifically, for
each color component, the encoder may estimate the coding
costs of SAO parameters, e.g., the SAO filter type and SAO
offsets, resulting from using each of the predefined SAO
filter types for the color component. The encoder may then
select the option with the best coding cost for the color
component. LCUs may also be “merged” for purposes of
signaling SAO parameters in the compressed bit stream. In
addition to directly determining the best SAO filter type and
offsets for the color components of an LCU, the encoder
may also consider the coding costs resulting from using the
SAOQ parameters of corresponding color components in left
and upper neighboring [.CUs (if these neighboring [.CUs are
available). If the SAO parameters of one of the neighboring
LCUs provide the best coding cost, one or more merge flags
(one per color component as appropriate) are signaled in the
compressed bit stream rather than directly signaling SAO
parameters.

Embodiments of the invention provide for high through-
put SAO filtering in video coding. More specifically, some
embodiments may support 4K@60 fps (frames per second)
for the next generation Ultra HDTV at 100 MHz clock. In
some embodiments, 64x64 blocks of pixels (the size of the
largest LCU in HEVC) may be filtered in less than 800
cycles with performance directly scaling down based on
LCU size. Some embodiments provide LCU level SAO
filtering with a three-stage internal pipeline. Some embodi-
ments use a novel filtering order as well as a novel scanning
order and 4x4 pixel block based processing to improve
filtering performance.

FIG. 4 is a block diagram of an SAO filter architecture
400 suitable for use in a video encoder or a video decoder.
This architecture assumes a multi-ported pool of on-chip
memory shared with other components of the video encoder
or video decoder that supports concurrent accesses by the
various components. The unit or granularity of pixel data
which is shared between various components is a block of
pixels. A pixel block is a non-overlapping small rectangular
region of a frame that may be 4 pixels wide and 4 pixels high
(4x4) for luma and 8 pixels wide and 2 pixels high (8x2) for
chroma. However, the pixel blocks filtered by the SAO filter
architecture are 4x4, regardless of color component. The
architecture also assumes a shared direct memory access
(DMA) component in the video encoder or decoder which
manages data transfers between the shared memory and
external memory.

US 9,473,784 B2

5

The architecture 400 implements SAO filtering at the
LCU level rather than at the frame level as specified in the
HEVC standard while maintaining compliance with the
expected output of frame level SAO filtering. The architec-
ture 400 also assumes that the video encoder or video
decoder performs deblocking at the LCU level. Because
deblocking is also performed at the LCU level, deblocked
pixel blocks from the neighboring left and bottom LCUs
needed for the EO mode in SAO filtering of the right column
and bottom row of a typical LCU are not available. Thus, the
filtering of the right and bottom pixel blocks of an LCU is
delayed until the needed deblocked pixel blocks are avail-
able. The architecture 400 is designed to handle the delay in
availability of these pixel blocks.

More specifically, the area filtered in each LCU-based
SAO cycle is shifted in the frame, i.e., the SAO processing
area associated with an LCU is shifted up by one row of
pixel blocks and left by one column of pixel blocks. This
shifting is illustrated by the “shaded” area in the example of
FIG. 5. Note that four sets of SAO parameters may be
needed for SAO filtering of a processing area. As is
explained in more detail herein, the architecture 400 imple-
ments a buffering scheme to handle the delay in filtering of
the right and bottom pixel blocks of an LCU.

Referring again to FIG. 4, the various components of the
architecture 400 are now briefly described. Operation of the
various components during the SAO filtering process is
described in more detail in reference to the methods of
FIGS. 6 and 7. The controller 406 manages the operation of
various components of the SAO filter architecture 400. More
specifically, the controller 406 sequences all filtering opera-
tions, e.g., loading of deblocked pixels, filtering, and for-
matting. The SAO parameter buffer 422 stores SAO param-
eters for the LCUs to be filtered. The SAO parameter buffer
422 operates in a first-in-first-out (FIFO) fashion. In a video
decoder, as SAO parameters for LCUs are decoded from an
encoded bit stream by the decoder, the decoder stores the
parameters in the SAO parameter buffer 422 via the SAO
parameter control 420. In a video encoder, the SAO param-
eters for an LCU are estimated by the encoder and stored in
the SAO parameter buffer 422 via the SAO parameter
control 420.

The configuration module 402 receives various frame
level parameters, e.g., height and width of the current frame,
height and width of an LCU in the frame, etc., and stores
these parameters in the configuration registers 404. The
SAO filter engine 408 performs the actual filtering operation
on the pixels of each pixel block. The input to the filter
engine is a 3x3 block of pixel blocks formed by the pixel
block to be filtered and the eight neighboring pixel blocks
needed for EO mode SAO filtering of the pixel block. This
3x3 block of pixel blocks is referred to as a filter block
herein. The SAO filter engine 408 filters the 16 pixels of a
pixel block in parallel.

The DMA (direct memory access) interface 424 may be
used by the controller 406 to trigger the DMA to read and
write data between the shared memory pool and the oftf-chip
memory. The memory interface 426 may be used to read and
write data between various components of the architecture
400 and the shared memory pool. The formatter 414 con-
verts filtered luma and chroma pixel blocks to the format
expected by other parts of the encoder or decoder prior to
storing the filtered pixel data in the shared memory pool. For
example, the formatter 114 may perform pixel block to raster
conversion and interleaving of filtered Cb and Cr blocks.
The DBLK control 416 manages the DBLK memory 418
storing the deblocked pixels of the LCU being filtered. The

10

15

20

25

30

35

40

45

50

55

60

65

6

DBLK control 416 receives deblocked pixel blocks and
stores the pixel blocks in the DBLK memory 418 and
provides deblocked pixel blocks to the work pixel buffer 410
as directed by the controller 406.

The working memory 412 stores two left work buffers of
deblocked pixel blocks and a top work buffer of deblocked
pixel blocks needed for filtering the SAO processing area
being processed as well as any SAO parameters needed for
filtering certain pixel blocks in these buffers. The left work
buffers are referred to as Left Work Buffer 0 and Left Work
Buffer 1 herein. The management and use of the three
buffers is described in more detail herein in reference to the
method of FIG. 7. The work pixel buffer 410 is used to build
the filter blocks for input to the SAO filter engine 408. The
work pixel buffer 410 is sized to support the pipelined
load/filter/store filtering operation. Thus, the work pixel
buffer 410 includes sufficient memory to store the nine pixel
blocks of the filter block being processed by the SAO filter
engine 408 as well as additional pixel blocks for loading the
next filter blocks needed to form the subsequent filter block.
The work pixel buffer 410 further includes sufficient
memory to store the filtered pixel block output by the
filtering engine and the previously filtered pixel block to be
transferred from the work pixel buffer 410 to the formatter
414. The work pixel buffer 410 includes sufficient memory
to store the SAO parameters for the pixel blocks of the four
LCUs included in the SAO processing area being filtered
and sufficient memory to store certain pixel blocks for
updating the work buffers.

FIGS. 6 and 7 are flow diagrams of methods for SAO
filtering that may be performed by the architecture of FIG.
4. FIG. 6 is a method of filtering a frame and FIG. 7 is a
method of filtering a pixel color component of an LCU.
Although method steps may be presented and described in a
sequential fashion, one or more of the steps shown in the
figures and described herein may be performed concurrently,
may be combined, and/or may be performed in a different
order than the order shown in the figures and/or described
herein. Accordingly, embodiments should not be considered
limited to the specific ordering of steps shown in the figures
and/or described herein.

As shown in FIG. 6, when the SAO filtering of a frame of
decoded video is initiated, the relevant frame parameters are
received 600 in the registers 404 of the architecture 400.
These parameters are read from the registers 404 by the
controller 406 and used to perform any initialization that
may be needed. For example, the controller 406 may use the
height and width of the frame and the L.CU size to determine
the number of LCUs in a frame, the number of LCUs in a
row, etc. In another example, a frame parameter may indi-
cate that SAO filtering is disabled at slice and or tile
boundaries. The controller 406 may then use this to disable
SAO filtering at these boundaries. Disabling of SAO filter-
ing for boundary conditions is described below in reference
to FIG. 14. Steps 602-604 illustrate the operation flow for
filtering each L.CU the frame and are repeated until all LCUs
in the frame are processed 614.

When a deblocked LCU is ready 602 (and SAO filtering
of the previous SAO processing area is finished), the con-
troller 406 initiates the SAO filtering of an SAO processing
area associated with the current deblocked LCU. When a
deblocked LCU is available in DBLK memory 418, the
controller 406 receives a signal from the DBLK control 416.
The controller 406 then causes the DBLK control 416 to
begin loading the deblocked pixel blocks of the LCU into the
work pixel buffer 410. Loading of deblocked pixel blocks is
described in more detail in reference to the method of FIG.

US 9,473,784 B2

7

7. A deblocked L.CU is ready when all portions of the LCU
that can be deblocked have been deblocked. Due to the
definition of deblocking in HEVC, the bottom three lines of
pixels of an LCU will not be deblocked when made available
for SAO filtering.

The color components of the SAO processing are then
filtered in turn according to the method of FIG. 7, i.e., the
luminance (luma) component is filtered 604, then the Cb
component is filtered 606, and finally the Cr component is
filtered 608. The filtered color component pixel blocks are
formatted 610 in the formatter 414, and the formatted pixel
data is stored 612 in the shared memory pool via the memory
interface 426. In general, the formatter 414 bypasses the
filtered luma pixel blocks, i.e., the filter luma pixel blocks
are stored directly into the shared memory pool, and inter-
leaves the filtered Cb and Cr pixel blocks prior to storage in
the shared memory pool. Because all Cb pixel blocks are
filtered before the Cr pixel blocks, the formatter 414 stores
the Cb pixels blocks in an internal work memory and
initiates the interleaving process as the Cr pixel blocks are
filtered. The pixel blocks are stored in the shared memory
pool in block format. In some embodiments, the formatter
414 may also convert the filtered pixel data to raster format
for storage in the shared memory pool.

FIG. 7 is a flow diagram of a method of SAO filtering of
a color component of an SAO processing area associated
with an LCU. As was previously mentioned, the SAO
processing area is the actual portion of the frame that will be
SAO filtered when deblocked data for an LCU is available.
The method is explained ignoring any boundary processing
issues and in reference to the example of FIGS. 8-11E. FIG.
8 shows an example frame divided into 32x32 L.CUs. For
purposes of explaining the method, the assumption is made
that the SAO processing area of LCUS is being filtered.
Thus, the SAO processing areas of LCUQ-LCU4 have been
filtered. Note that the SAO processing area of LCUS
includes the bottom right pixel block of LCUO, all the pixels
blocks of the bottom row of LCU1 except the one at the
bottom right, and all of the pixel blocks of the rightmost
column of LCU4 except the one at the bottom right.

The example of FIG. 9 shows the three work buffers
stored in work memory 412, a 32x32 LCU divided into 4x4
pixel blocks, and the SAO processing area associated with
the L.CU, also divided into 4x4 pixel blocks. For purposes of
the initial explanation of the method, this example is
assumed to correspond to LCUS of FIG. 8. Note that the
SAO processing area includes deblocked pixel blocks in
Left Work Buffer 1. The pixel block [.11 is the bottom right
pixel block of LCUO and the pixel blocks [.12-1.19 are the
deblocked pixel blocks of the rightmost column of LCU4.
Further, Left Work Buffer 1 includes pixel block .10 which
is the pixel block of LCUO immediately above the bottom
right pixel block of LCUO. These pixel blocks were stored
in Left Work Buffer 1 when the SAO processing area of the
previous LCU, e.g., LCU4, was filtered.

In Left Work Buffer 0, the deblocked pixel block L.O1 is
the pixel block in LCUO immediately to the left of the
bottom right pixel block of LCUO and the deblocked pixel
block 10O is the pixel block in LCUO immediately to the left
and above the bottom right pixel block of LCUO. Further,
pixel blocks [.02-L.09 are the pixel blocks of the column of
LCU4 immediately to the left of the rightmost column of
LCU4 Pixel blocks L.02-1.08 are completed deblocked and
the top row of pixels of .09 are deblocked. The pixel blocks
were stored in Left Work Buffer 0 when the SAO processing
area of the previous LCU, e.g., LCU4, was filtered.

10

15

20

25

30

35

40

45

50

55

60

65

8

The pixel blocks in the Top Work Buffer are the deblocked
pixel blocks of the second to last row of LCUI. The pixel
blocks in the Top Work Buffer were saved in the shared
memory pool when the SAO processing area associated with
LCU1 was filtered and are retrieved from the shared
memory pool when needed for filtering of the SAO pro-
cessing area associated with LCUS. Note that the pixel
blocks needed to populate the top work buffers for a sub-
sequent row of LCUs are saved in the shared memory pool
rather than the work memory 412 as the SAO processing
areas of the previous row of LCUs are filtered in order to
reduce the size of the work memory 412.

Referring again to FIG. 7, when filtering of an SAO
processing area is initiated, the SAO parameters needed to
filter the SAO processing area are retrieved 700 by the
controller 406 and stored in the work pixel buffer 410. In
addition, the pixel blocks needed to filter the top row of pixel
blocks in the SAO processing area are retrieved by the
controller 406 from the shared memory pool and stored in
the top work buffer in the work memory 412. More specifi-
cally, the SAO parameters for the LCU, e.g., LCUS, are
retrieved 700 from the SAO parameter buffer 422 by the
controller 406 and stored in the work pixel buffer 410.
Further, the SAO parameters needed to filter the top row of
pixel blocks of the SAO processing area, e.g., .11, All,
Al12, A21, A22, B11, B12, and B21 of FIG. 9, are retrieved
by the controller 406 and stored in the work pixel buffer. The
top left pixel block of the SAO processing area, e.g., 11 of
FIG. 9, is the bottom right pixel block of the top left
neighboring LCU, e.g., LCUO of FIG. 8, so the SAO
parameters of that LCU are needed for filtering this pixel
block. The remaining pixel blocks of the top row of the SAO
processing area, e.g., All, A12, A21, A22, B11, B12, and
B21 of FIG. 9, are the bottom row of the top neighboring
LCU, e.g., LCU1 of FIG. 8, less the rightmost block, so the
SAO parameters of that LCU are needed for filtering these
pixel blocks.

The SAO parameters for the top row of the SAO pro-
cessing area are stored in the shares memory pool when the
SAO processing areas of the previous row of LCUs are
filtered and are retrieved by the controller 406 as needed.
Note that the pixels blocks in the left column of the SAO
processing area, e.g., [.12-1.18 of FIG. 9, except for the top
pixel block are from the previous LCU, e.g., LCU3, so the
SAO parameters for this LCU are needed for filtering these
pixel blocks. These SAO parameters are already in the work
pixel buffer and need not be retrieved by the controller 406.

Referring again to FIG. 7, the pixel blocks of the first filter
block to be processed are loaded 702 into the work pixel
buffer 410. The controller 406 causes the needed pixel
blocks to be loaded from the left and top work buffers in the
work memory 412 and/or DBLK memory 418 as needed.
For example, the first pixel block of the SAO processing
area associated with LCUS of FIG. 8 to be filtered will be
L11 of the Left Work Buffer 1 as shown in FIG. 9. To form
the filter block for the pixel block L11, the controller 406
causes [.10, L.11, and L.12 to be copied from the Left Work
Buffer 1 to the work pixel buffer 410, 1,00, LO1, and 102 to
be copied from the Left Work Buffer O to the work pixel
buffer 410, TOO to be copied from the top work buffer to the
work pixel buffer 410, and A11 and A13 to be copied from
DBLK memory 418 to the work pixel buffer 410. FIG. 11A
shows the content of the filter block for L11.

Once the initial filter block is ready 704, the pipelined
filtering process begins. In this pipelined process, the fol-
lowing operations are performed in parallel: the next filter
block is loaded 706 into the work pixel buffer 410, the

US 9,473,784 B2

9

current filter block is processed by the filter engine 408 to
filter 708 the current pixel block, and the previously filtered
pixel block is stored 710. FIG. 13 is a conceptual illustration
of this three stage pipelined filtering process. The filtering
process continues 712 until all pixel blocks in the SAO
processing area have been filtered.

The pixel blocks in the SAO processing area are filtered
in a novel scan order. As illustrated in the example of FIG.
12, the SAO processing area is divided into 16x16 sub-
processing areas. Within a 16x16 sub-processing area, the
pixels blocks are filtered in raster scan order. The 16x16
sub-processing areas are processed in Z-scan order. The
example of FIG. 10 illustrates the detailed pixel block
filtering order for the example 32x32 SAO processing area
of FIG. 9.

Filter blocks for the pixel blocks to be filtered are loaded
706 into the work pixel buffer 410 according to this filtering
order. Further, the number of pixel blocks to be loaded for
a load stage of the pipelined filtering process depends on the
location of the next pixel block to be filtered in the filtering
order. For example, referring to FIG. 9 and FIGS. 11A-11E,
as previously described, to filter the first pixel block [.11 in
the SAO processing area, .00, L.O1, 102 L.10, .12, TOO,
All, and A12 are loaded into the work pixel buffer 410
along with [L11. This filter block is shown in FIG. 11A. The
next pixel block to be filtered is A11. The filter block for A1l
is shown in FIG. 11B. Note that six of the nine pixel blocks
needed to form the filter block for A11, including the pixel
block All, will already be loaded in the work pixel buffer
410. Thus, the load stage of the filter block for A11 will only
load three neighboring pixel blocks, TO1, A12, and Al4.

The next pixel block after A1l to be filtered is A12. The
filter block for A12 is shown in FIG. 11C. Note that six of
the nine pixel blocks needed to form the filter block for A12,
including the pixel block A12, will already be loaded in the
work pixel buffer 410. Thus, the load stage of the filter block
for A12 will only load three neighboring pixel blocks, T02,
A21, and A23. The next pixel block after A12 to be filtered
is A21. The filter block for A21 is shown in FIG. 11D. Note
that six of the nine pixel blocks needed to form the filter
block for A21, including the pixel block A21, will already be
loaded in the work pixel buffer 410. Thus, the load stage of
the filter block for A21 will only load three neighboring
pixel blocks, T03, A22, and A24.

The next pixel block after A21 to be filtered is L.12. The
filter block for L12 is shown in FIG. 11E. Given that the
work pixel buffer 410 is sized to hold the current filter block
and three additional pixel blocks, none of the pixel blocks
need to form the filter block for [.12 will be in the work pixel
buffer 410. Thus, the load stage of the filter block for [.12
will load all nine pixel blocks of the filter block.

Referring again to FIG. 7, the sixteen pixels of the current
pixel block are filtered 708 in parallel by the filter engine
408 and the filtered pixels are stored in the work pixel buffer
410 in the filter stage of the pipeline. The operation of the
filter engine to filter a pixel block is described herein in
reference to FIG. 14. As previously mentioned, the work
pixel buffer 410 is sized to hold the filtered pixel block being
generated by the filter engine and the previously filtered
pixel block. The previously filtered pixel block is stored 710
in the store stage of the pipeline. Where this previously
filtered pixel block is stored depends upon which color
component of the SAO processing area is being filtered. If
the luma color component is being filtered, the filtered pixel
block bypasses the formatter 414 and is stored in the shared
memory pool. If the Cb color component is being filtered,
the formatter 414 stores the filtered pixel blocks in an

15

25

40

45

55

10

internal memory. If the Cr color component is being filtered,
the formatter 414 interleaves the filtered Cb pixel blocks and
the filtered Cr pixel blocks and stores them in the shared
memory pool.

As previously mentioned, the rightmost column of pixel
blocks and the bottom row of pixel blocks of the current
LCU, e.g., LCUS of FIG. 8, cannot be filtered due to
unavailability of needed deblocked neighbors. The right-
most column of pixel blocks (except the bottom pixel block)
will be filtered as part of the SAO filtering area of the
subsequent LCU, e.g., LCU6 of FIG. 8. Thus, the pixel
blocks of this rightmost column, e.g., B22, B24, B42, B44,
D22, D24, D42, D44, and BO7 of FIG. 9, need to be stored
in the Left Work Buffer 1 prior to filtering the SAO pro-
cessing area of LCU6 as well as the last pixel block in the
Top Work Buffer, e.g., TO7 of FIG. 9. The pixel blocks that
will form the Left Work Buffer 1 for the next LCU, e.g.,
LCUG6 of FIG. 8, are copied into the appropriate locations in
this buffer in the work memory 412 “on-the-fly” when
certain pixel blocks of the SAO processing area of the
current LCU, e.g., LCU 5 of FIG. 8, are filtered.

The on-to-fly copying to the work buffer happens only
when a pixel block in the work buffer is no longer needed for
filtering. For example, when T07, B22, B24, and B42 are
stored in the work pixel buffer 410 as part of one or more
filter blocks, they can be copied to respective locations [.10,
L11,L12, and L13 in the Left Work Buffer 1 as the contents
of these locations in the Left Work Buffer 1 are no longer
needed for filtering of the SAO processing area. However,
B44 cannot be copied to 114 the first time it is loaded into
the work pixel buffer 410 as the current .14 is needed for
filtering of subsequent pixel blocks. B44 may be copied to
L14 the next time it is loaded into the work pixel buffer 410
for filtering of D21. Note that D22, D24, D42, D44, and B0O7
may be copied to respective locations the Left Work Buffer
1 when initially loaded in the work pixel buffer 410.

To support the filtering of the rightmost column of pixel
blocks, the pixel blocks in the left neighboring column of
this rightmost column, e.g., B21, B23, B41, B43, D21, D23,
D41, D43, and B06 of FIG. 9, need to be stored in the Left
Work Buffer 0 prior to filtering the SAO processing area of
the subsequent LCU, e.g., LCUG6 of FIG. 8, as well as the
next-to-last pixel block in the Top Work Buffer, e.g., T0O6 of
FIG. 9. The pixel blocks that will form the Left Work Buffer
0 for the next LCU, e.g., LCU6 of FIG. 8, are copied into the
appropriate locations in this buffer in the work memory 412
“on-the-fly” when certain pixel blocks of the SAO process-
ing area of the current LCU, e.g., LCU 5 of FIG. 8, are
filtered.

The on-to-fly copying to the work buffer happens only
when a pixel block in the work buffer is no longer needed for
filtering. For example, when T06, B21, B23, and B41 are
stored in the work pixel buffer 410 as part of one or more
filter blocks, they can be copied to respective locations L.0O,
L01, L02, and LO3 in the Left Work Buffer 0 as the contents
of these locations in the Left Work Buffer 0 are no longer
needed for filtering of the SAO processing area. However,
B43 cannot be copied to 104 the first time it is loaded into
the work pixel buffer 410 as the current .04 is needed for
filtering of subsequent pixel blocks. B43 may be copied to
L04 the next time it is loaded into the work pixel buffer 410
for filtering of D12. Note that D21, D23, D41, D43, and B06
may be copied to respective locations the Left Work Buffer
0 when initially loaded in the work pixel buffer 410.

The bottom row of pixel blocks in the current LCU, e.g.,
LCUS of FIG. 8, will be filtered as part of the SAO filtering
area of the bottom neighboring L.CU, e.g., LCU9 of FIG. 8.

US 9,473,784 B2

11

Thus, the deblocked pixel blocks of the next-to-last row of
the current LCU, e.g., LCUS of FIG. 8, are potentially
needed to filter the bottom row of pixel blocks and will be
the contents of the Top Work Buffer in the work memory 412
when the SAO filtering area of the bottom neighboring LCU,
e.g., LCU9 of FIG. 8, is processed. The deblocked pixel
blocks of the next-to-last row of the current LCU, e.g.,
LCUS, are copied into the appropriate locations in top work
buffer in the work memory 412 “on-the-fly” when these
pixel blocks are loaded into the work pixel buffer 410. Note
that by the time this next-to-last row is processed, the pixel
blocks of the current Top Work Buffer are no longer needed.
Thus, for example, referring to FIG. 9, when the pixel block
(33 is loaded into the work pixel buffer 410, it is also stored
in the TOO location of the Top Work Buffer. In another
example, when the pixel block D43 is loaded into the work
pixel buffer 410, it is also stored in the TO6 location of the
Top Work Buffer. Note that although D44 will not be filtered,
it is loaded into the work pixel buffer 410 when D43 is
loaded as it is potentially needed for filtering D43 and is also
stored in the TO7 location of the Top Work Buffer.

Referring again to FIG. 7, after all the pixel blocks in the
current SAO processing area are filtered 712, the contents of
the top pixel buffer in the work memory 412 and the SAO
parameters of the current LCU, e.g., LCUS of FIG. 8, are
stored in the shared memory pool for future filtering of the
bottom row of pixel blocks in the current LCU.

FIG. 14 is a block diagram of the SAO filter engine 408
of FIG. 4. As previously mention, the filter engine 408 is
configured to filter all sixteen pixels of a pixel block in
parallel. The filter engine 408 includes an edge offset
component for performing EO filtering of a pixel block and
a band offset component for performing BO filtering of a
pixel block. The controller 400 knows the SAO filter type of
each pixel block and activates either the edge offset com-
ponent or the band offset component for each pixel block
based on its SAQ filter type. The multiplexor at the outputs
of the two filtering components also selects the output of the
appropriate component based on the SAO filter type of the
pixel block being filtered.

One of the inputs to each filtering component is a set of
16 flags, one for each pixel to be filtered. The controller 400
uses these flags to manage filtering behavior for boundary
conditions. If the flag corresponding to a pixel is set to 1, no
filtering is performed on the pixel, even if filtering is
otherwise enabled for the current SAO processing area. The
controller 400 may use these flags, for example, to disable
EO filtering of pixels at the boundaries of a frame as the
pixel data needed for EO filtering of such pixels may not be
available. The controller 400 may also use these flags, for
example, to disable EO and/or BO filtering of certain pixels
if the frame parameters indicate that SAO filtering across
slice and/or tile boundaries is disabled.

To perform EO filtering, the controller 406 causes the nine
pixel blocks of the current filter block in the work pixel
buffer 410 to be stored in the filter block storage of the edge
offset component. Further, the controller provides the EO
type (from the SAO parameters) for the current pixel block
and the 16 flags to the ALU (arithmetic logic unit) and loads
the four offsets (from the SAO parameters) into four loca-
tions of the offset buffer. The fifth location of the offset
buffer is set to zero. As will be explained below, the offset
buffer is indexed by the output of the AL U to select the offset
to be added to a pixel. The fifth location that is set to zero
is selected by an index value of zero.

The ALU receives thirty-six pixels from the filter block
storage, the sixteen pixels of the current pixel block to be

10

15

20

25

30

35

40

45

50

55

60

65

12

filtered and the twenty pixels needed from the neighboring
blocks in the filter block. The ALU computes an offset index
for each of the sixteen pixels in parallel as per

offsetldx = 2 + sign(p0-pl) + sign(p0-p2)
if (offsetldx < 3) offsetldx = offsetldx == 2 ? 0: offsetldx + 1

where p0 is a pixel to be filtered and pl and p2 are
neighboring pixels selected from the thirty-six input pixels
according to the specified EO type. Further, the ALU forces
the offset index to be zero for any pixel for which the
corresponding flag in the sixteen flags is set to 1, indicating
that the pixel is not to be filtered.

The sixteen offset indices computed by the AL U are input
to a multiplexor that selects the offset values to be added to
each pixel from the offset buffer based on values of the offset
indices. The adder adds the sixteen offset values to the
sixteen pixels of the current pixel block in parallel. The clip
unit clips any pixel values that exceed the maximum pixel
value, e.g., 255, and the resulting pixel block is stored in the
work pixel buffer 410.

To perform BO filtering, the controller 406 causes the
sixteen pixels of the current pixel block in the work pixel
buffer 410 to be stored in the pixel block register storage of
the band offset component. Further, the controller provides
the band offset position (from the SAO parameters) for the
current pixel block and the 16 flags to the ALU (arithmetic
logic unit) and loads the four offsets (from the SAO param-
eters) into four locations of the offset buffer. The fifth
location of the offset buffer is set to zero. As will be
explained below, the offset buffer is indexed by the output of
the ALU to select the offset to be added to a pixel. The fifth
location that is set to zero is selected by an index value of
Zero.

The ALU receives the sixteen pixels from the pixel block
register storage and computes an offset index for each of the
sixteen pixels in parallel as per

bandNum = p0 & O0xF8 >> 3
offsetldx = bandNum - StartbandNum + 1
if (offsetldx < 1 or offsetldx > 5) offsetldx = 0

where p0 is a pixel to be filtered and StartbandNum is the
band offset position (BOPos). Further, the ALU forces the
offset index to be zero for any pixel for which the corre-
sponding flag in the sixteen flags is set to 1, indicating that
the pixel is not to be filtered.

The sixteen offset indices computed by the AL U are input
to a multiplexor that selects the offset values to be added to
each pixel from the offset buffer based on values of the offset
indices. The adder adds the sixteen offset values to the
sixteen pixels of the current pixel block in parallel. The clip
unit clips any pixel values that exceed the maximum pixel
value, e.g., 255, and the resulting pixel block is stored in the
work pixel buffer 410.

Other Embodiments

While the invention has been described with respect to a
limited number of embodiments, those skilled in the art,
having benefit of this disclosure, will appreciate that other
embodiments can be devised which do not depart from the
scope of the invention as disclosed herein.

US 9,473,784 B2

13

For example, embodiments have been described herein
assuming that the pixel blocks are 4x4. One of ordinary skill
in the art will understand embodiments in which the size of
the pixel blocks is different.

In another example, embodiments have been described
herein assuming that the sub-processing areas of an SAO
processing area are 16x16. One of ordinary skill in the art
will understand embodiments in which the sub-processing
areas are larger, e.g., 32x32.

In another example, embodiments have been described
herein in which the filter engine includes separate compo-
nents for EO and BO filtering. One of ordinary skill in the
art will understand embodiments in which the design of the
filtering engine is unified such the offset buffer, multiplexor,
adder, and clip unit are used for both EO and BO filtering
and two ALUs are provided, selected by SAO type, one for
EO and one for BO.

In another example, embodiments have been described
herein in which the LCUs in a frame are filtered in raster
scan order. One of ordinary skill in the art will understand
embodiments in which tiling is enabled and the LCUs are
processed tile by tile. In such embodiments, left work buffers
may be stored in the shared memory pool as well as the top
work buffers and retrieved as needed.

In another example, one of ordinary skill in the art will
understand embodiments in which the filter engine may be
replicated to allow parallel SAO filtering of luma, Cb, and
Cr pixel blocks.

In another example, one of ordinary skill in the art will
understand embodiments in which the some or all of the
work memory is outside of the SAO architecture, e.g., in an
on-chip memory or an external memory.

In another example, one of ordinary skill in the art will
understand embodiments in which the SAO architecture has
a single unified buffer rather than a separate work pixel
buffer and a separate work memory.

In another example, one of ordinary skill in the art will
understand embodiments in which the scan order of the pixel
blocks in an SAO processing area is different than that
described above. For example, the pixel blocks may be
scanned row-by-row in raster scan order or column-by-
column in which each column is scanned top-to-bottom.

It is therefore contemplated that the appended claims will
cover any such modifications of the embodiments as fall
within the true scope of the invention.

What is claimed is:

1. A method for sample adaptive offset (SAO) filtering of
largest coding units (LCUs) of a video frame in an SAO
component, the method comprising:

receiving, by the SAO component, an indication that

deblocked pixel blocks of an LCU are available; and
applying SAO filtering, by the SAO component, to each
pixel block of pixel blocks of an SAO processing area
corresponding to the LCU responsive to the indication,
wherein pixels of each pixel block of the SAO processing
area are filtered in parallel, and

wherein the SAO processing area consists of all pixel

blocks of the LCU except a rightmost column of pixel
blocks in the LCU and a bottom row of pixel blocks in
the LCU, a bottom row of pixel blocks of a top
neighboring LCU of the LCU except for a rightmost
pixel block of the bottom row, a rightmost column of
pixel blocks of a left neighboring LCU of the LCU
except for a bottom pixel block of the rightmost col-
umn, and a bottom rightmost pixel block of a top left
neighboring LCU of the LCU.

25

30

35

40

50

55

60

65

14

2. The method of claim 1, wherein a pixel block is a 4x4
block of pixels.

3. The method of claim 1, wherein a pixel block is one
selected from a group consisting of a luminance pixel block,
a Cr pixel block, and a Cb pixel block.

4. The method of claim 1, wherein applying SAO filtering
comprises:

filtering each pixel block of the SAO processing area

according to a scan order in which the SAO processing
area is divided into non-overlapping sub-processing
areas that are scanned in Z-scan order and pixel blocks
within a sub-processing area block are scanned in raster
scan order.

5. The method of claim 4, wherein a sub-processing area
is a 16x16 block of pixels.

6. The method of claim 1, wherein applying SAO filtering
comprises filtering the pixel blocks in the SAO processing
area in a scan order selected from a group consisting of
raster scan order and column by column scan order in which
each column is scanned top to bottom.

7. The method of claim 1, wherein the pixel blocks of the
LCU in the SAO processing area are stored in a memory
comprised in the SAO component, the pixel blocks of the
left neighboring LLCU are stored in a first work buffer
comprised in the SAO component, pixel blocks of a left
neighboring column of the rightmost column of pixel blocks
of the left neighboring LCU are stored in a second work
buffer comprised in the SAO component, and pixel blocks of
a top neighboring row of the bottom row of pixel blocks of
the top neighboring L.CU are stored in a third work buffer
comprised in the SAO component.

8. The method of claim 7, wherein applying SAO filtering
comprises:

storing pixel blocks of a rightmost column of pixel blocks

of the LCU in the first work buffer;

storing pixel blocks of a left neighboring column of pixel

blocks of the rightmost column in the second work
buffer; and

storing pixel blocks of a top neighboring row of pixel

blocks of the bottom row of pixel blocks of the LCU in
the third work buffer.

9. An apparatus for sample adaptive offset (SAO) filter-
ing, the apparatus comprising:

a memory;

a controller coupled to the memory and configured to

sequence loading of pixel blocks of an SAO processing
area into the memory, filtering of the pixel blocks by a
filter engine, and storing of the filtered pixel blocks,
wherein the SAO processing area corresponds to a
largest coding unit (LCU) of a video frame, and
wherein the loading, filtering, and storing is performed
responsive to an indication that deblocked pixel blocks
of the LCU are available; and

a filter engine coupled to the controller and the memory,

wherein the filter engine is configured to apply SAO
filtering to a pixel block of the SAO processing area
stored in the memory, wherein all pixels in the pixel
block are filtered in parallel, and wherein the SAO
processing area consists of all pixel blocks of the LCU
except a rightmost column of pixel blocks in the LCU
and a bottom row of pixel blocks in the LCU, a bottom
row of pixel blocks of a top neighboring LCU of the
LCU except for a rightmost pixel block of the bottom
row, a rightmost column of pixel blocks of a left
neighboring LCU of the LCU except for a bottom pixel
block of the rightmost column, and a bottom rightmost
pixel block of a top left neighboring LCU of the LCU.

US 9,473,784 B2

15
10. The apparatus of claim 9, wherein a pixel block is a
4x4 block of pixels.

11. The apparatus of claim 9, wherein a pixel block is one
selected from a group consisting of a luminance pixel block,
a Cr pixel block, and a Cb pixel block.

12. The apparatus of claim 9, wherein the controller is
configured to load pixel blocks of the SAO processing area
into the memory for filtering by the filter engine according
to a scan order in which the SAO processing area is divided
into non-overlapping sub-processing areas that are scanned
in Z-scan order and pixel blocks within a sub-processing
area block are scanned in raster scan order.

13. The apparatus of claim 12, wherein a sub-processing
area is a 16x16 block of pixels.

14. The apparatus of claim 9, wherein the controller is
configured to load pixel blocks of the SAO processing area
into the memory for filtering by the filter engine in a scan

10

15

16

order selected from a group consisting of raster scan order
and column by column scan order in which each column is
scanned top to bottom.

15. The apparatus of claim 9, wherein the memory com-
prises a first work buffer for storing the pixel blocks of the
left neighboring .CU, a second work buffer for storing pixel
blocks of a left neighboring column of the rightmost column
of pixel blocks of the left neighboring LCU, and a third work
buffer for storing pixel blocks of a top neighboring row of
the bottom row of pixel blocks of the top neighboring LCU.

16. The apparatus of claim 15, wherein the controller is
configured to cause first pixel blocks of a rightmost column
of pixel blocks of the LCU to be stored in the first work
buffer, second pixel blocks of a left neighboring column of
pixel blocks of the rightmost column to be stored in the
second work buffer, and third pixel blocks of a top neigh-
boring row of pixel blocks of the bottom row of pixel blocks
of the LCU to be stored in the third work buffer.

#* #* #* #* #*

